

In Partnership with:

Background

Low Carbon London trials

Insights from the LCL trials

How are we using this insight?

2010: Where we were at the start of the project

Source: "Benefits of Advanced Smart Metering for Demand Response based Control of Distribution Networks" Imperial College London, ENA, SEDG

2010: Next steps for DNOs

Update the assumptions used in the previous study, plus other models used, to account for the impact of Low Carbon Technologies (LCT) uptake:

- Models
 - Element Energy Model predict load and LCT uptake
 - Transform Model industry model to reflect LCT uptake on generic networks
 - Load Related Expenditure model specific modelled networks
- Load Forecasting
 - Inform the business plan and investment decisions
 - Build a forecast of the effect of demand and uptake over time
- Further insight into the ability to control or influence demand

Background

Low Carbon London trials

Insights from the LCL trials

How are we using this insight?

Electric Vehicle Trials

TRANSPORT FOR LONDON

Commercial Residential **Public** Active Power Monitoring Time of Use Monitoring Network Quality Management 2 982 94 54 72 10 Office for Low Emission Vehicles smarter grid solutions ource **edf** FUTURE TRANSPORT SYSTEMS integrating transport with infrastructure LONDON

CGI

point

SIEMENS

TRANSPORT FOR LONDON

Heat Pump Trials

Heat Pumps

Monitoring

23

Power Quality

20

SIEMENS

Background

Low Carbon London trials

Insights from the LCL trials

How are we using this insight?

There is no typical 'commercial' EV demand profile

Average heavy duty commercial EV charging profile for different days of week

Source: LCL Report B1*

^{*}M. Aunedi, M. Woolf, M. Bilton, G. Strbac, "Impact and opportunities for wide-scale electric vehicle deployment", Report B1 for the "Low Carbon London" LCNF project: Imperial College London, 2014.

Residential EVs represent an additional 0.3kW contribution to peak demand per household

Average residential EV charging profile for different days of week

Source: LCL Report B1*

^{*}M. Aunedi, M. Woolf, M. Bilton, G. Strbac, "Impact and opportunities for wide-scale electric vehicle deployment", Report B1 for the "Low Carbon London" LCNF project: Imperial College London, 2014.

Newly developed residential EV demand diversity curves support network planning

Residential EV demand diversity

Source: LCL Report B1*

^{*}M. Aunedi, M. Woolf, M. Bilton, G. Strbac, "Impact and opportunities for wide-scale electric vehicle deployment", Report B1 for the "Low Carbon London" LCNF project: Imperial College London, 2014.

Extreme weather conditions (sub-zero) significantly increases the peak demand from HPs

E.g. average temperature of -4°C and a penetration level of 20% of household owning heat pumps increases peak daily load by 72% above baseline

Figure 23: Transformer loading under weather scenario 1 conditions (av. temperature, -4°C)

Figure 26: Transformer loading under weather scenario 4 (av. temperature 7°C)

Source: LCL Report B4*

M. Bilton, N. E. Chike, M. Woolf, P. Djapic, M. Wilcox, G. Strbac, "Impact of low voltage – connected low carbon technologies on network utilisation", Report B4 for the "Low Carbon London" LCNF project: Imperial College London, 2014.

HPs were found to contribute various levels of power quality disturbance

Mean current magnitude of the 3rd, 5th, 7th, 9th, 11th, 13th harmonics for all of the heat pumps

Source: LCL Report B3*

N. Bottrell, E. Ortega, M. Bilton, T. Green, G. Strbac, "Impact of low voltage – connected low carbon technologies on power quality", Report B3 for the "Low Carbon London" LCNF project: Imperial College London, 2014.

Background

Low Carbon London trials

Insights from the LCL trials

How are we using this insight?

The most significant impact is on the LV network

Source: LCL Report B2

We are using these insights to inform the business

- Updating load forecast models with the new figures
- Informing policy and standards on the management of LCTs e.g.
 ENA notification for heat pump power quality
- Revising design standards and approaches
- There are opportunities for the smart optimisation of LCT loads –
 particularly EVs

Background

Low Carbon London trials

Insights from the LCL trials

How are we using this insight?

Demand shifting can be achieved

There is potential benefit for DNOs to develop opportunities for smart optimisation of new transport loads

Demand shifting can be achieved in two distinct ways:

- Encouraging behavioural changes consisting of financial incentives aimed at influencing customer behaviour
- Technical mechanisms, such as cyclic switching of specific loads at peak times

Source: LCL Report B5

Automated real time network management can be achieved through the combination of ANM and the utilisation of an EV controller

Source: LCL Report B2

Realising the benefits depends on a number of factors

- LCT uptake and concentration
- Coordination across industry is required to extract the benefits of mechanisms such as Time of Use tariffs
- Each consumer group presents a different opportunity
 - Residential: flexible, available and fairly reliable demand
 - Head-duty commercial: e.g. freight, inflexible but potential for smart connections
- A vendor agnostic solution would be most appropriate

LCL has concluded that different EV user groups are suited to different control mechanisms – dictated by their charging behaviour

		Domestic Private	Domestic Public	Fleet	Public Transport
Behavioural Intervention	Education	✓		✓	
	Time of Use	✓		√ **	
Technical Intervention	SMETS ALCS	✓			
	EV Controller		✓	✓	
	ANM		✓	✓	
	Reinforcement / New Connection	✓			

Source: LCL Report B5

ukpowernetworks.co.uk/innovation

The findings from **Low Carbon London** represent a step change in understanding the electricity network required for a low carbon future.

If you would like to know more about our reports please email us: innovation@ukpowernetworks.co.uk

Partners:

