

In Partnership with:

Agenda

- Before Low Carbon London
- Our partners
- The journey through LCL
- Lessons from the trials
- In the future post 2030

Low Carbon London Importance of Information Technology

- The project that has trialled and demonstrated a broad range of smarter potential approaches to how DNOs may invest and operate in the future.
- LCL has brought together leading industry specialists to emulate the 2020/2030 electricity supply chain.

- IT/OT requirements and architectures for smart grid management techniques will be relevant to:
 - Network monitoring;
 - Smart meter utilisation;
 - Forecasting;
 - Planning;
 - Control and operations; and
 - Commercial aspects such as billing and settlements.

Typical historical UK DNO IT architecture development

Typical historical UK DNO IT architecture development

Low Carbon London Proposed solution diagram

Low Carbon London Logical Architecture

LCL Engineering Instrumentation Zones

- Three EIZs: Brixton, Merton and Queen's Park.
- c. 31,000 MPANs across the three EIZs
- 106 meters located at the end of feeders: proxy for voltage measurements at LV customer premises

Network Visibility & Data Collection – History

Data integration and quality Key findings

- Integrated network topology & asset model needs data combined from several source systems – not straightforward, some level of record ID mismatches
- Network-premise connectivity data is the hardest to achieve high quality
 - ...but HH MPANs and those of PCs 5-8 offer low-hanging fruit for improvements: <1% of all premises, but PCs 5-8 each consume as much as 39 domestic premises and HH MPANs even more.

Building on initial LCL analysis (C1)

- Only 0.35% of all the phases measured showed more than 1% of readings outside of statutory limits using 10 minute data resolution
- Voltage on the London network is towards the higher end of the allowable limits
- Lower voltage limit is responsible for more voltage excursions currently

Source: LCL Report D2

Sensitivity analysis Alerts per year for EIZs

Voltage limits: very high extreme above the statutory limits (+14% / -10%), the statutory limit (+10% / -6%) and two levels under that (+12% / -8% and (+8% / -5%)

	# alerts /yr						
	10 min duration		30 min duration		60 min duration		
	High:	121,453	High:	56,445	High:	26,194	
+8% / -5%	Low:	2,647	Low:	1078	Low:	653	
	Total:	124,100	Total	<i>57,523</i>	Total:	26,847	
	High:	61	High:	1	High:	0	
+10% / -6%	Low:	1,563	Low:	691	Low:	499	
	Total	1,624	Total:	692	Total:	499	
	High:	11	High:	0	High:	0	
+12% / -8%	Low:	641	Low:	414	Low:	367	
	Total	652	Total:	414	Total:	367	
	High:	1	High:	0	High:	0	
+14% / -10%	Low:	415	Low:	355	Low:	332	
	Total:	416	Total:	355	Total:	332	

Power quality management process

Future Scenarios

LCL Report D2 studied two future scenarios:

Scenario	Period	Date	Description	Characteristics
Α	Late ED1	2021	High-Confidence Near-Term	Post-SMIP; DSR use; conservative LCT take-up estimates
В	ED2	2027	Longer-Term	More optimistic take-up estimates; includes ANM

Today's presentation is focussed on Scenario A.

Smart SM voltage reporting configuration

Smart SM configuration – idealised example

Planning Tools

CRM DUOS Billing Financials

DNO IT/OT Architecture Evolution

DTN gateway

Source: LCL Report D2

DUoS Billing

Financials

Additional monitoring, and data exchange with TSO

DTN gateway

IVR

Web

CRM

Source: LCL Report D2

Recommendations

- System changes are likely to be incremental and evolutionary rather than radical
- Increasing need for a fully integrated network topology/ asset/premises model, with LCT data linked into this
- Most high-volume metering/measurement data need only be collected selectively when/where required
- Investment in additional network monitoring should be targeted at networks close to capacity or with significant LCT adoptions
- Smart Meter data will help considerably with outage and voltage excursion management, and assist forecasting and planning for networks that are approaching the monitoring threshold
- Standardisation will increasingly be beneficial the interfaces between DSR participants are a good example.

ukpowernetworks.co.uk/innovation

The findings from **Low Carbon London** represent a step change in understanding the electricity network required for a low carbon future

If you would like to know more about our reports please email us: innovation@ukpowernetworks.co.uk

Partners:

